Table 1. Fractional coordinates and equivalent isotropic thermal parameters $(Å^2)$ with their e.s.d.'s in

Table 2. Bond distances (Å) and bond angles (°) withe.s.d.'s in parentheses

parentheses					C(4)C(5)	1.437 (7)	N(3) - C(2) 1.	381 (8)
$U_{eq} = (1/3) \sum_i \sum_i U_{ii} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_i.$					C(5) - C(6) C(5) - C(7)	1·341 (7) 1·486 (8)	N(3) - C(4) = 1 O(2) - C(2) = 1	215 (8)
C(2) C(4) C(5) C(6) C(7) C(1') C(2') C(3') C(3') C(3') N(1) N(3) O(2) O(4) N(3) O(2) O(4)	$U_{eq} = \frac{x}{0.0680}$ (3) 0-0680 (3) 0-1589 (2) 0-1589 (2) 0-1740 (2) 0-2071 (3) 0-1513 (3) 0-1513 (3) 0-2219 (3) 0-2219 (3) 0-2219 (3) 0-2219 (3) 0-22616 (3) 0-3286 (3) 0-1817 (3) 0-1302 (2) 0-0534 (2) 0-0718 (2) 0-0718 (2)	$parenthesis= (1/3) \sum_i \sum_j U_{ij} display (1/3) \sum_{i=1}^{N} (1/3) $	es $a_i^* a_j^* a_i . a_j .$ z 0.289 (1) -0.033 (1) -0.095 (1) 0.032 (1) -0.290 (2) 0.339 (1) 0.138 (1) 0.287 (1) 0.448 (1) 0.325 (1) 0.446 (2) 0.656 (2) 0.2132 (-) 0.159 (1) 0.482 (1)	U_{eq}/U_{iso} 0.050 (2) 0.041 (2) 0.040 (2) 0.040 (2) 0.044 (2) 0.051 (2) 0.053 (2) 0.052 (2) 0.057 (2) 0.057 (3) 0.095 (3) 0.041 (2) 0.044 (2) 0.045 (2) 0.045 (2) 0.043 (2) 0.053 (1) 0.053 (2)	$\begin{array}{c} C(4)-C(5)\\ C(5)-C(6)\\ C(5)-C(7)\\ C(1')-C(2')\\ C(2')-C(3')\\ C(3')-C(4')\\ C(4')-C(5')\\ C(3')-C(3'2)\\ N(1)-C(2)\\ N(1)-C(2)\\ N(1)-C(6)\\ N(1)-C(1')\\ C(3')-O(3')-C(3'2)\\ C(3')-O(3')-C(3'2)\\ C(3')-O(3')-C(3'2)\\ C(3')-O(3')-C(3'2)\\ C(3')-C(3'2)\\ C(3')-C(3')\\ C(3$	$\begin{array}{c} 1.437 (7) \\ 1.341 (7) \\ 1.341 (7) \\ 1.486 (8) \\ 1.52 (1) \\ 1.50 (1) \\ 1.497 (9) \\ 1.490 (9) \\ 1.490 (9) \\ 1.466 (1) \\ 1.377 (9) \\ 1.374 (6) \\ 1.374 (6) \\ 1.375 (6) \\ 1.375 (6) \\ 1.214 (4) \\ 1.18.9 (4) \\ 1.19.7 (5) \\ 127.2 (5) \\ 127.2 (5) \\ 124.1 (6) \\ 124.1 (6) \\ 124.9 (6) \\ 114.0 (5) \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	381 (8) 375 (7) 215 (8) 235 (6) 449 (8) 348 (6) 424 (8) 456 (8) 434 (9) 14 (1) 47 (3) 107-9 (4) 106-1 (6) 113-8 (5) 101-8 (5) 105-7 (5) 110-8 (5) 105-7 (5) 115-1 (6)
O(4')	0.2142 (2)	0.4153 (2)	0.484 (1)	0.050(1)	O(4) - C(4) - N(3) O(4) - C(4) - C(5)	124.5 (5)	O(5') - C(5') - C(4')	109-4 (6)
O(5') O(3'1) O(3'2)	0-3156 (2) 0-2047 (5) 0-258 (1)	0·4381 (2) 0·1940 (3) 0·240 (1)	0.039 (1) 0.258 (2) 0.436 (5)	0·038 (2) 0·138 (4)* 0·098 (8)†	N(3) - C(4) - C(5) C(4) - C(5) - C(6) C(4) - C(5) - C(7)	115·8 (4) 117·5 (5) 119·4 (5)	O(3')- $C(3'1)$ - $O(3'1)O(3')$ - $C(3'1)$ - $O(3'2)O(3')$ - $C(3'1)$ - $C(3'2)$) 120·3 (6)) 89 (1)) 112·4 (6)
* S.o.f. 0.81 (1). † S.o.f. 0.19 (1) and U_{iso} .					C(6)-C(5)-C(7) N(1)-C(6)-C(5)	123·0 (5) 124·0 (5)	O(3'1)—C(3'1)—C(3' O(3'2)—C(3'1)—C(3'	2) 127·1 (5) 2) 123 (1)

Related literature. The molecular geometry of the title compound is very similar to that of the recently reported structure of the orthorhombic modification (Eccleston, Wilson & Howie, 1988). In the two modifications the base residues are head-to-head linked by N(3)—H···O(4) hydrogen bonds. However, the modifications differ in the second hydrogen bond: in the hexagonal form the bond is between sugar O(5')—H and base O(4), whereas in the orthorhombic form the bond connects O(5')—H and O(4') of neighbouring sugar residues.

References

CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.

CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.

ECCLESTON, R. S., WILSON, C. C. & HOWIE, R. A. (1988). Acta Cryst. C44, 1424-1426.

SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

SHELDRICK, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

SPEK, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAYRE, p. 528. Oxford: Clarendon Press.

Acta Cryst. (1991). C47, 1322-1324

Structure of 6-Allyl-3-hydroxymethyl-6,10b-dimethyl-2-phenyl-2,3,5,6-tetrahydroisoquinolino[1,2-*b*][1,3]oxazol-5-one

BY KEVIN A. ANDERSEN AND OREN P. ANDERSON*

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA

(Received 20 March 1990; accepted 13 November 1990)

Abstract. $C_{23}H_{25}NO_3$, $M_r = 363.46$, orthorhombic, $P2_12_12_1$, a = 10.047 (4), b = 10.599 (4), c = 19.003 (6) Å, V = 2024 (1) Å³, Z = 4, $D_x = 10.023$

* Author to whom correspondence should be addressed.

1.19 g cm⁻³, λ (Mo $K\alpha$) = 0.7107 Å, μ = 0.9 cm⁻¹, F(000) = 776, T = 151 K, R = 0.050 (wR = 0.068) for 1888 unique observed reflections. Three fused (six-, six- and five-membered) heteroatom rings contain an amide N bridgehead atom.

0108-2701/91/061322-03\$03.00

Experimental. Crystals (colorless prisms) of C23H25NO3 [hereafter (1)] were obtained from a dichloromethane/hexane solution by Dr Thomas Wünsch and Professor A. I. Meyers. Crystal size 0.51 $\times 0.52 \times 0.62$ mm. Nicolet R3m diffractometer, unitcell constants from least-squares fit of setting angles for 25 reflections $(2\theta_{av} = 23.16^{\circ})$. Data collected (Wyckoff ω scans) to $(\sin\theta)/\lambda = 0.5947 \text{ Å}^{-1}, 0 \le h \le$ 12, $0 \le k \le 13$, $-23 \le l \le 0$. Three standard reflections (400, 040, 006) measured every 97 reflections, approximately linear 11% decrease in intensity for each over course of data collection, correction applied; Lorentz and polarization corrections; no absorption correction applied because of the low absorption coefficient; 2060 reflections measured, 2039 unique, 1888 reflections with $F_o > 2.5\sigma(F_o)$ observed.

Structure solved by direct methods [RANT (Sheldrick, 1983)]; block-diagonal (maximum 103 parameters/block, 255 parameters total, data/ parameters = 7.40) weighted $\{w = [\sigma^2(F) + gF^2]^{-1}, g$ = 1.81×10^{-3} least-squares refinement on F. H atoms in idealized positions [C-H = 0.96 Å, U(H)]= $1.2 \times U_{iso}(C)$] with exception of H(O3) (located in difference map and refined with isotropic thermal parameter). Non-H atoms refined with anisotropic thermal parameters. Extinction correction applied, x = 0.012 (1) (Larson, 1967; Sheldrick, 1983). At convergence $[(\Delta/\sigma)_{max} = 0.126, (\Delta/\sigma)_{mean} = 0.019$ for last three cycles] R = 0.050, wR = 0.068, S = 1.31, slope of normal probability plot = 1.13, $(\Delta \rho)_{\text{max}} = 0.24$, $(\Delta \rho)_{\rm min} = -0.17 \, {\rm e} \, {\rm \AA}^{-3}$. Known stereochemistry at C(10) (S) and C(11) (S) (Wünsch, 1990) from synthetic precursor gave relative stereochemistry at C(8) (S) and fixed the enantiomorph. Neutral-atom scattering factors and anomalous-dispersion corrections used (International Tables for X-ray Crystallography, 1974, Vol. IV); all calculations performed using SHELXTL (Sheldrick, 1983). Table 1 gives atomic coordinates and Table 2 gives bond lengths and angles.* Fig. 1 shows the structure of (1) and the numbering scheme used.

Table 1. Atomic coordinates and equivalent isotropic thermal parameters ($\mathring{A}^2 \times 10^3$) for (1)

Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor.

	x	У	Ζ	U
C(1)	0.0987 (3)	0.9175 (3)	0.7189(1)	36 (1)
C(2)	0.2041 (3)	0.9145 (3)	0.7755 (1)	35 (1)
C(3)	0.1947 (4)	0.9994 (3)	0.8324 (1)	42 (1)
C(4)	0.2817 (4)	0.9916 (3)	0.8888 (2)	47 (1)
C(5)	0.3776 (4)	0.8952 (4)	0.8903 (2)	50 (1)
C(6)	0.3892 (4)	0.8128 (3)	0.8336 (2)	49 (1)
C(7)	0.3053 (3)	0.8226 (3)	0.7743 (1)	39 (1)
C(8)	0.3221 (3)	0.7336 (3)	0.7102(2)	41 (1)
C(9)	0.2532 (3)	0.7844 (3)	0.6437 (1)	37 (1)
C(10)	0.0854 (3)	0.9288 (2)	0.5917 (1)	36 (1)
C(11)	0.0227 (3)	1.0472 (3)	0.6270 (1)	35 (1)
C(12)	0.0632 (3)	1.1739 (3)	0.5947 (1)	37 (1)
C(13)	-0.0317 (4)	1.2501 (3)	0.5605 (1)	42 (1)
C(14)	0.0058 (4)	1.3659 (3)	0.5314 (2)	52 (1)
C(15)	0.1372 (4)	1.4076 (3)	0.5371 (2)	52 (1)
C(16)	0.2308 (4)	1.3336 (3)	0.5715 (2)	49 (1)
C(17)	0.1948 (4)	1.2161 (3)	0.5999 (2)	42 (1)
C(18)	- 0·0152 (4)	0.8448 (3)	0.5529(1)	40 (1)
C(19)	-0.0299 (3)	0.8520 (3)	0.7439 (2)	40 (1)
C(20)	0.2583 (4)	0.6039 (3)	0.7265 (2)	50 (1)
C(21)	0.4732 (3)	0.7138 (3)	0.6919 (2)	47 (1)
C(22)	0.5492 (4)	0.8334 (4)	0.6790 (2)	58 (Ť)
C(23)	0.6092 (5)	0.8655 (4)	0.6205 (2)	72 (1)
N(1)	0.1473 (3)	0.8633 (2)	0.6520 (1)	36 (1)
O(1)	0.2879 (3)	0.7515 (2)	0.5829(1)	49 (1)
O(2)	0.0711 (2)	1.0463 (2)	0.6991 (1)	37 (1)
O(3)	-0.0697 (3)	0.9187 (2)	0.4965 (1)	50 (1)
H(O3)	- 0.1189 (43)	0.8554 (34)	0.4660 (19)	77 (12)*
			. ,	,

* Refined isotropically.

Table 2. Bond lengths (Å) and bond angles (°) for (1) with e.s.d.'s in parentheses

C(1)-C(2)	1.510 (4)	C(1) - C(19)	1.542 (4)
C(1) - N(1)	1 478 (3)	C(1) - O(2)	1.442 (3)
C(2)-C(3)	1.410 (4)	C(2) - C(7)	1 408 (4)
C(3)—C(4)	1.385 (4)	C(4) - C(5)	1.405 (5)
C(5)—C(6)	1.392 (5)	C(6) - C(7)	1.412 (4)
C(7)—C(8)	1.550 (4)	C(8)-C(9)	1.538 (4)
C(8)-C(20)	1.548 (4)	C(8) - C(21)	1.572 (5)
C(9)—N(1)	1.362 (4)	C(9)—O(1)	1.255 (3)
C(10)-C(11)	1.556 (4)	C(10)-C(18)	1.536 (4)
C(10)—N(1)	1·477 (4)	C(11) - C(12)	1.531 (4)
C(11)—O(2)	1.455 (3)	C(12)-C(13)	1.408 (4)
C(12)-C(17)	1.400 (5)	C(13)-C(14)	1.398 (4)
C(14)-C(15)	1.396 (6)	C(15)-C(16)	1.388 (5)
C(16)—C(17)	1.405 (4)	C(18)-O(3)	1.436 (4)
C(21)C(22)	1.500 (5)	C(22)-C(23)	1.310 (5)
O(3)—H(O3)	1.015 (39)		.,
C(2) = C(1) = C(10)	1110 (2)	C D	
C(10) = C(1) = C(19)	111.0 (2)	C(2) = C(1) = N(1)	111.9 (2)
C(10) - C(1) - N(1)	111.5 (2)	C(2) - C(1) - O(2)	109.9 (2)
C(1) = C(1) = C(2)	110.2 (2)	N(1) - C(1) - O(2)	102.0 (2)
C(1) - C(2) - C(3)	119-1 (3)	C(1) - C(2) - C(7)	120.6 (2)
C(3) - C(2) - C(7)	120.2 (3)	C(2) - C(3) - C(4)	120.9 (3)
C(5) = C(4) = C(5)	119.4 (3)	C(4) - C(5) - C(6)	119-9 (3)
C(3) = C(0) = C(7)	121.4 (3)	C(2) - C(7) - C(6)	118-0 (3)
C(2) - C(3) - C(8)	120.9 (3)	C(6) - C(7) - C(8)	121·I (3)
C(1) - C(3) - C(9)	112.5 (2)	C(7) - C(8) - C(20)	109.7 (2)
C(9) = C(8) = C(20)	106.9 (3)	C(7) - C(8) - C(21)	111-1 (3)
C(9) - C(0) - C(21)	107.5 (2)	C(20) - C(8) - C(21)	109.0 (3)
N(1) = C(0) = N(1)	118-1 (2)	C(8) - C(9) - O(1)	122-2 (3)
N(1) = C(9) = O(1)	119.6 (3)	C(11) - C(10) - C(18)) 114-1 (3)
C(10) - C(10) - N(1)	102.5 (2)	C(18) - C(10) - N(1)	112-2 (2)
C(10) - C(11) - C(12)	115.3 (2)	C(10) - C(11) - O(2)	105-4 (2)
C(12) = C(11) = O(2)	107-1 (2)	C(11) - C(12) - C(13)) 120-5 (3)
C(11) = C(12) = C(17)	120.2 (3)	C(13) - C(12) - C(17)) 119-2 (3)
C(12) - C(13) - C(14)	120.3 (3)	C(13) - C(14) - C(15)) 120-1 (3)
C(14) - C(15) - C(16)	119.9 (3)	C(15)-C(16)-C(17) 120.5 (3)
C(12) - C(17) - C(16)	120.0 (3)	C(10) - C(18) - O(3)	107.0 (2)
C(0) - C(21) - C(22)	114.6 (3)	C(21)-C(22)-C(23) 126-4 (4)
C(1) = N(1) = C(9)	126.6 (2)	C(1) - N(1) - C(10)	110-1 (2)
C(9) = N(1) = C(10)	121.9 (2)	C(1)-O(2)-C(11)	108-4 (2)
U(18) - U(3) - H(O3)	104.5 (20)		

^{*} Lists of anisotropic thermal parameters, H-atom coordinates and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53754 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. The structure of $C_{23}H_{23}NO_3$ (50% probability thermal ellipsoids). H atoms have been omitted for clarity.

Related literature. Two compounds have been previously studied that contain five- and six-membered fused rings with an amide N atom at the bridgehead and an ether functionality in the five-membered ring bound to the other bridgehead atom: 3-benzyl-9hydroxymethyl-3,6-dimethyl-8-phenyl-7,1-oxazabi-

cyclo[4.3.0]nonan-2-one [(2), Meyers, Lefker, Wanner & Aitken (1986)]; 6,7,8,8a α -tetrahydro-2 α phenyl-5*H*-oxazolo[3,2-*a*]pyridin-3(2*H*)-one (Malmros & Wagner, 1977). In the structure of (1), hydrogen bonds from the hydroxymethyl O atom to the amide O atom link molecules of (1) into chains [O(1)-O(3ⁱ) 2.753 (3), O(1)-H(O3ⁱ) 1.74 (4) Å, O(1)-H(O3ⁱ)-O(3ⁱ) 176 (4)°; (i) $x - \frac{1}{2}, \frac{3}{2} - y, \frac{3}{2} - z$].

The out-of-plane deformation of the amide group in (1) and (2) can be described by three parameters:

 $\chi_{\rm N}, \chi_{\rm C}$ and τ (Winkler & Dunitz, 1971). The deviation from planarity of the amide in (1) is significant, given that $\chi_N = 14.7$ and $\chi_C = 2.9^\circ$. The torsional angles $\omega_1 [C(8) - C(9) - N(1) - C(10) = 172.5 (3)^\circ]$ and $\omega_2 [O(1) - C(9) - N(1) - C(1) = -175.8 (3)^\circ]$ added together give the twist angle $\tau = -3.3^{\circ}$. N(1) is 0.07 Å out of the least-squares plane through the amide linkage and associated C atoms bound to the N atom [N(1), C(9), O(1), C(1) and C(10)]. Corresponding parameters in (2) are $\chi_N = 155.3$, $\chi_C =$ 1.0° , $\omega_1 = 167.9$, $\omega_2 = -168.3^{\circ}$ and $\tau = -0.4^{\circ}$, and the amide N is 0.13 Å out of the corresponding plane. While the geometry at the amide N atom is non-planar in both (1) and (2), the degree of deformation is smaller in (1) possibly as a result of the fused benzene ring constraining the geometry of the unsaturated six-membered ring.

We acknowledge the support of the US National Science Foundation for the purchase of the Nicolet R3m diffractometer and computing system.

References

LARSON, A. C. (1967). Acta Cryst. 23, 664-665.

- MALMROS, G. & WAGNER, A. (1977). Cryst. Struct. Commun. 6, 553-556.
- MEYERS, A. I., LEFKER, B. A., WANNER, K. T. & AITKEN, R. A. (1986). J. Org. Chem. 51, 1936–1938.
- SHELDRICK, G. M. (1983). SHELXTL. Revision 4, Nicolet XRD Corporation, Madison, Wisconsin, USA.
- WINKLER, F. K. & DUNITZ, J. D. (1971). J. Mol. Biol. 59, 169–182.
- WÜNSCH, T. (1990). Private communication.

Acta Cryst. (1991). C47, 1324-1326

(Benzimidazolyl-1)-3 Méthyl-1 N-(α-Méthylbenzyl)propylamine

PAR N. RODIER

Laboratoire de Chimie Minérale, Faculté des Sciences Pharmaceutiques et Biologiques, 5 Rue J.-B. Clément, 92296 Châtenay-Malabry CEDEX, France

R. CÉOLIN

Laboratoire de Chimie Minérale, Faculté de Pharmacie, 2 bis Boulevard Tonnelé, 37042 Tours CEDEX, France

ET M. JOANNIC ET M. BARREAU

Service de Chimie, Rhône-Poulenc Santé, 13 Quai Jules Guesde, 94400 Vitry sur Seine, France

(Reçu le 2 juillet 1990; accepté le 26 octobre 1990)

Abstract. $C_{19}H_{23}N_3$, $M_r = 293.4$, monoclinic, P_{21} , 1.133 Mg m^{-3} , $\lambda(\text{Mo } K\bar{\alpha}) = 0.7107 \text{ Å}$, $\mu = a = 11.510 (3)$, b = 6.148 (2), c = 12.183 (3) Å, $\beta = 0.063 \text{ mm}^{-1}$, F(000) = 316, T = 294 (1) K, $R = 0.035 94.12 (1)^\circ$, $V = 859.9 (7) \text{ Å}^3$, Z = 2, $D_x =$ for 1363 independent observed reflections. All bond

0108-2701/91/061324-03\$03.00 © 1991 International Union of Crystallography